

A New Real-Time Six-Port A N A Method

L. Kaliouby and R.G. Bosisio

Ecole Polytechnique
Montreal, Canada

ABSTRACT

A method for real-time six-port automatic network analyzer (ANA) measurements based on the use of a pre-calculated six-port chart is developed. It is shown that a swept frequency generator can be used to read the module and/or phase of the reflection coefficient (Γ) on a computer screen at sweep rates of up to 75 Hz. The test band is determined by the six-port design, typically 9:1, the accuracy of measurement is dependent on the swept frequency interval and on the six-port circuit design.

INTRODUCTION

Six-port automatic network analyzers [1,2,3] measure the reflection coefficient, Γ , using four power detectors, that give:

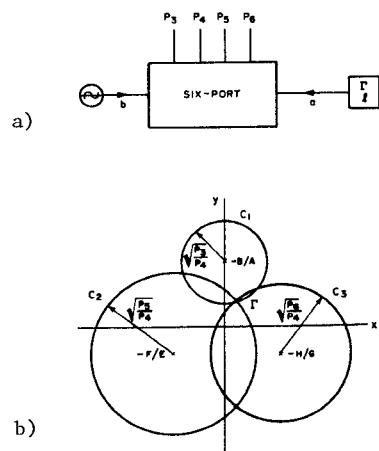
$$P_3 = |aA + bB|^2 \quad (1)$$

$$P_4 = |aC + bD|^2 \quad (2)$$

$$P_5 = |aE + bF|^2 \quad (3)$$

$$P_6 = |aG + bH|^2 \quad (4)$$

where a , b are the reflected and incident wave ($\Gamma = a/b$), and $A, B \dots H$ are complex constants of the six-port design.


For an ideal six-port, $C=0$, and the ratios $-B/A$, $-F/E$ and $-H/G$ all have the same module (.5 to 1.5), and a phase difference of 120° . The reflection coefficient, Γ , is then calculated as the intersection of three circles with centers in the Γ plane, given by $-B/A$, $-F/E$ and $-H/G$ (Fig. 1a&b).

In practice, a six-port is more easily realized with standard components, such that $|B/A| = \sqrt{2}$, $|F/E| = |H/G| = 2$, with a phase difference of $135^\circ - 135^\circ$ and 90° [4].

Moreover, experimental measurements have shown that the six-port constants, $A, B \dots H$, diverge from design objectives and

vary with frequency. Thus, precise evaluation of Γ requires a careful calibration procedure at a given set of frequency points. For this reason, six-port measurements are normally done at discrete frequency points and this excludes continuous swept frequency measurements. Swept frequency measurements are very useful in experimental development work, where it is often necessary to visualize the phase and amplitude of Γ in real-time over a given bandwidth, say f_1 to f_2 .

Engen has already referred to the possibility of using analog signals, corresponding to the power readings, in order to display on an oscilloscope screen the module and phase of Γ , as a function of frequency [4]. However, the method requires the transmission of weak analog signals, specific and predetermined values of $A, B \dots H$, and a constant incident power level; these conditions tend to reduce the accuracy and reliability of the measurements.

1.a) A six-port network analyzer gives four output power readings as a function of both module and phase of Γ , where $\Gamma = x + j y$.
 1.b) The reflection coefficient, Γ , is calculated as the intersection of three circles in the Γ plane.

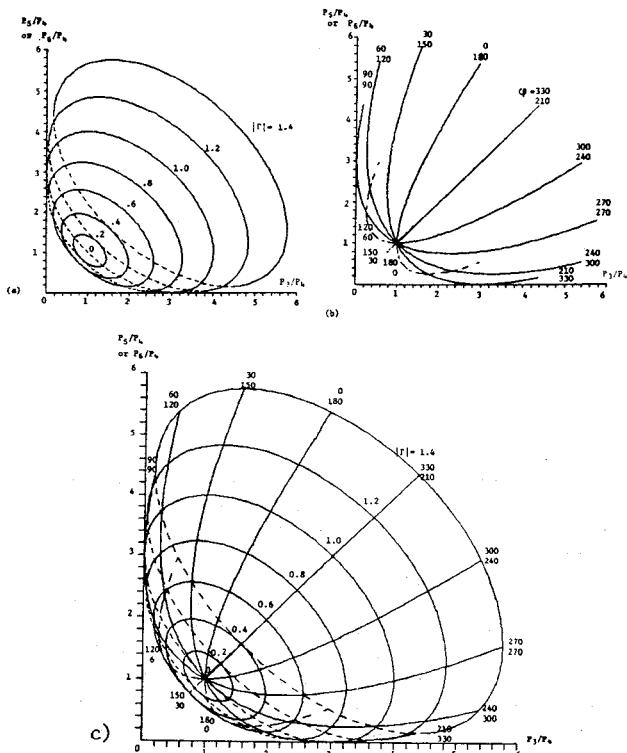
In this paper, we derive a six-port amplitude chart (SPAC) to measure the module of Γ , and a six-port phase chart (SPPC) to measure the phase of Γ . Both charts may be separately displayed or superimposed on a computer screen along with the measured phase and amplitude response of Γ , over a given bandwidth, f_1 to f_2 . The power readings are digitized at the six-port and transmitted to the computer via a IEEE 488 bus.

Both six-port charts (SPAC and SPPC) are derived from calibration measurements taken at a number of frequencies within the bandwidth of the six-port: this information is stored in the computer data bank for later use. In a given frequency band, the SPAC and the SPPC are generated on the computer screen from the stored calibration data for the chosen swept frequency interval (f_1 to f_2). At first, a single frequency sweep may be obtained across the full test band at reduced accuracy using an average SPAC and SPPC across the band. Then the swept frequency interval f_1-f_2 is reduced to a predetermined value and the base band frequency f_1 is manually scanned across the full test band for increased accuracy of measurement.

THEORY

For six-port network analyzers, the power ratios P_3/P_4 , P_5/P_4 and P_6/P_4 are respectively given by:

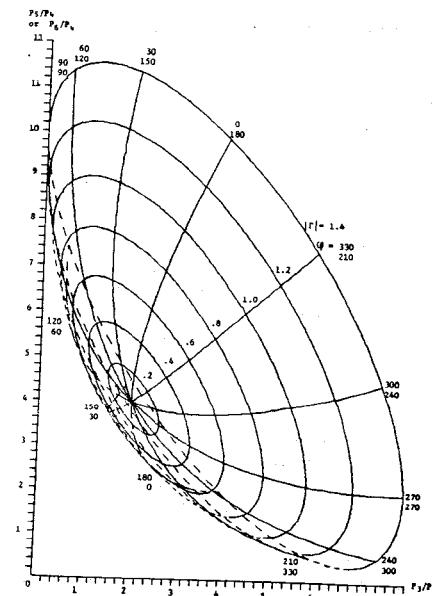
$$\frac{P_3}{P_4} = \frac{|A\Gamma + B|^2}{|C\Gamma + D|^2} \quad (5)$$


$$\frac{P_5}{P_4} = \frac{|E\Gamma + F|^2}{|C\Gamma + D|^2} \quad (6)$$

$$\frac{P_6}{P_4} = \frac{|G\Gamma + H|^2}{|C\Gamma + D|^2} \quad (7)$$

It's possible, using equations (5), (6) and (7), with calibrated values of A, B, \dots, H , to calculate loci of constant module and phase of Γ , as a function of the power ratios P_3/P_4 , P_5/P_4 and P_6/P_4 .

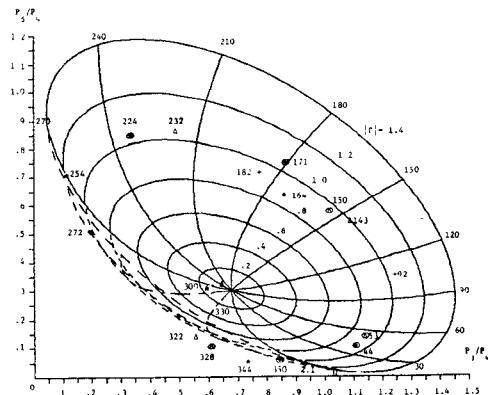
Figures 2a&b show this chart for an ideal 120° distribution where $C = 0$, $|A|^2 = |D|^2 = |E|^2 = |G|^2$, $-B/A = 1 \times 90^\circ$, $-F/E = 1 \times 210^\circ$ and $-H/G = 1 \times 330^\circ$. Superimposed SPAC and SPPC are shown in Fig. 2c for the above case. Similar charts are obtained for $135^\circ-135^\circ-90^\circ$ distribution where $-B/A = \sqrt{2} \times 90^\circ$, $-F/E = 2 \times 225^\circ$ and $-H/G = +24315^\circ$ as seen in Fig. 3.


The approach is equally applicable to five-port systems [6,7] as shown in Fig. 4. In this case, it has been assumed, $C=0$, $-B/A = -1$ and $-F/E = -j$.

2.a) A SPAC showing locus of constant module of Γ , for a six-port assuming ideal 120° distribution.

2.b) A SPPC showing locus of constant phase (in degrees) of Γ , for a six-port assuming 120° distribution.

2.c) Superimposed SPAC and SPPC showing locus of constant module and phase (in degrees) of Γ , for a six-port assuming ideal 120° distribution.


3. Superimposed SPAC and SPPC for a six-port assuming common $135^\circ-135^\circ-90^\circ$ distribution.

4. A five-port superimposed SPAC and SPPC chart assuming a 90° separation between the two circle centers.

EXPERIMENTAL RESULTS

An ideal 120° six-port designed in our laboratory [3] using microwave integrated technology has been measured in the interval 2-4 GHz. A six-port chart (for P_3/P_4 and P_5/P_4) at 3 GHz is given in Fig. 5, with $|A/C|^2=8.22$, $|E/C|^2=3.40$, $|G/C|^2=5.21$, $-D/C = 6.0643^\circ$, $-B/A = 1.7443^\circ$, $-F/E = 1.804265^\circ$, $-H/G = 1.43190^\circ$.

5. A SPAC and SPPC chart at 3 GHz with actual values of A, B, ..., H as measured from an actual 120° six-port design [3]. Experimental measurements done at 3 GHz (+), 2.9 GHz (*) ($\Psi_{off} = 52^\circ$) and 3.1 GHz (Δ) ($\Psi_{off} = 21^\circ$) are shown. Encircled data points near $|\Gamma| = 1$ correspond to fixed short and open circuit, and the non-circled data corresponds to a sliding short. For the test data near $|\Gamma| = 0$ the three experimental points correspond to a matched load condition.

Measurement of $|\Gamma|$ for some loads (matched load, open short, fixed short, sliding short at four different positions) are also shown. Similar measurements were repeated at $f = 2.9$ GHz and $f = 3.1$ GHz. As expected, the error is negligible at $f = 3$ GHz. However at 2.9 and 3.1 GHz the data points for short circuit, open circuit, matched load and sliding short conditions are seen in Fig. 5 to produce the following average errors:

$\Delta|\Gamma| = .07$ and $\Delta\Phi = 10^\circ$, where an offset phase Ψ_{off} is taken into account at f_1 . The repetitive accuracy of amplitude and phase measurements are in this case less than 10% and 5%.

The offset phase Ψ_{off} is known and it can be displayed on the screen in numerical form for any given frequency interval, $f_1 - f_2$.

CONCLUSION

A six-port amplitude chart (SPAC) and a six-port phase chart (SPPC) displayed on a computer screen can be used with good accuracy for swept frequency measurements of the module and phase of the reflection coefficient of a device under test (DUT). It is found that the accuracy of the phase and amplitude measurements depend on the swept frequency interval. The accuracy is sufficiently good to allow experimental optimization of DUT performance using a swept frequency test mode. The same apparatus may then be used at single frequency points to obtain the usual six-port accuracy.

REFERENCES

- (1) Engen, G.F., Hoer, C.A., Applications of an arbitrary Six-Port Junction to Power Measurement Problems, IEEE Trans. on IM, Vol. IM-21, No. 4, pp. 470-474, Dec. 1972.
- (2) Engen, G.F., The Six-Port Reflectometer: An Alternative Network Analyzer, IEEE Trans. on Microwave Theory and Techn., Vol. MTT-25, pp. 1075-1079, Dec. 1977.
- (3) Li, S.H., Automatic Analysis of Multi-Port Microwave Network, Ph.D. Thesis, Ecole Polytechnique de Montreal, 1982.
- (4) Engen, G.F., An Improved Circuit for Implementing the Six-Port Technique of Microwave Instruments, IEEE Microwave Theory and Techn., Vol. MTT-25, pp. 1080-1083, Dec. 1977.
- (5) Engen, G.F., Calibrating the Six-Port Reflectometer by Means of Sliding Terminations, IEEE Trans. on IM, Vol. IM-22, No. 4, pp. 295-299, Dec. 1973.
- (6) Riblet, G.P., A Compact Waveguide 'Resolver' for the accurate Measurement of Complex Reflection and Transmission Coefficient Using the Six-Port Measurement Concept, IEEE Trans. on Microwave Theory and Techn., Vol. MTT-29, pp. 115-162, Feb. 1982.
- (7) Li, S.H., Bosisio, R.G., Measurement of Complex Reflection Coefficient by Means of a Five-Port Reflectometer, IEEE Trans. on Microwave Theory and Techn., Vol. MTT-31, No. 4, pp. 321-326, April 1983.